Programmable on-chip nonlinear photonics | Nature

Programmable on-chip nonlinear photonics | Nature
Boyd, R. W. Nonlinear Optics (Academic, 2008).
Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).
Google Scholar
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Google Scholar
Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).
Google Scholar
Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006).
Google Scholar
Dutt, A., Mohanty, A., Gaeta, A. L. & Lipson, M. Nonlinear and quantum photonics using integrated optical materials. Nat. Rev. Mater. 9, 321–346 (2024).
Google Scholar
Ansari, V., Donohue, J. M., Brecht, B. & Silberhorn, C. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica 5, 534–550 (2018).
Google Scholar
Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).
Google Scholar
Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).
Google Scholar
Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics 11, 200–206 (2017).
Google Scholar
Heydari, D. et al. Degenerate optical parametric amplification in CMOS silicon. Optica 10, 430–437 (2023).
Google Scholar
Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16, 134–141 (2022).
Google Scholar
Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2020).
Google Scholar
Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).
Google Scholar
Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics 13, 494–499 (2019).
Google Scholar
Li, B. et al. Down-converted photon pairs in a high-Q silicon nitride microresonator. Nature 639, 922–927 (2025).
Google Scholar
Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).
Google Scholar
Lu, H.-H., Liscidini, M., Gaeta, A. L., Weiner, A. M. & Lukens, J. M. Frequency-bin photonic quantum information. Optica 10, 1655–1671 (2023).
Google Scholar
Oliver, R. et al. N-way parametric frequency beamsplitter for quantum photonics. Phys. Rev. Res. 7, 023108 (2025).
Google Scholar
Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2013).
Google Scholar
McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).
Google Scholar
Saxena, M., Eluru, G. & Gorthi, S. S. Structured illumination microscopy. Adv. Opt. Photonics 7, 241–275 (2015).
Google Scholar
Heist, S. et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26, 23366–23379 (2018).
Google Scholar
Wang, Z. et al. Metasurface-empowered five-dimensional imaging with structured light. ACS Photonics 11, 3898–3906 (2024).
Google Scholar
Hum, D. S. & Fejer, M. M. Quasi-phasematching. C. R. Phys. 8, 180–198 (2006).
Google Scholar
Hu, X., Xu, P. & Zhu, S. Engineered quasi-phase-matching for laser techniques. Photonics Res. 1, 171–185 (2013).
Google Scholar
Chen, B.-Q., Zhang, C., Hu, C.-Y., Liu, R.-J. & Li, Z.-Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett. 115, 083902 (2015).
Google Scholar
Zhu, S.-n, Zhu, Y.-y & Ming, N.-b Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).
Google Scholar
Imeshev, G. et al. Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings. Opt. Lett. 23, 864–866 (1998).
Google Scholar
Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009).
Google Scholar
Dolev, I., Ellenbogen, T. & Arie, A. Switching the acceleration direction of Airy beams by a nonlinear optical process. Opt. Lett. 35, 1581–1583 (2010).
Google Scholar
Fang, B., Li, H., Zhu, S. & Li, T. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Res. 8, 1296–1300 (2020).
Google Scholar
Yoo, S. J. B. et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding. Appl. Phys. Lett. 68, 2609–2611 (1996).
Google Scholar
Boes, A. et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J. Phys. Photonics 3, 012008 (2021).
Google Scholar
Chen, P.-K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2023).
Google Scholar
Maker, P. D. & Terhune, R. W. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137, A801 (1965).
Google Scholar
Oudar, J. L. & Le Person, H. Second-order polarizabilities of some aromatic molecules. Opt. Commun. 15, 258–262 (1975).
Google Scholar
Lüpke, G. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep. 35, 75–161 (1999).
Google Scholar
Zhao, X. et al. Nontrivial phase matching in helielectric polarization helices: universal phase matching theory, validation, and electric switching. Proc. Natl Acad. Sci. 119, e2205636119 (2022).
Google Scholar
Sultanov, V. et al. Tunable entangled photon-pair generation in a liquid crystal. Nature 631, 294–299 (2024).
Google Scholar
Onodera, T. et al. Scaling on-chip photonic neural processors using arbitrarily programmable wave propagation. Preprint at https://arxiv.org/abs/2402.17750 (2024).
Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).
Google Scholar
Margules, P., Moses, J., Suchowski, H. & Porat, G. Ultrafast adiabatic frequency conversion. J. Phys. Photonics 3, 022011 (2021).
Google Scholar
Shiloh, R. & Arie, A. Spectral and temporal holograms with nonlinear optics. Opt. Lett. 37, 3591–3593 (2012).
Google Scholar
Leshem, A., Shiloh, R. & Arie, A. Experimental realization of spectral shaping using nonlinear optical holograms. Opt. Lett. 39, 5370–5373 (2014).
Google Scholar
Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174 (2022).
Google Scholar
Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019).
Google Scholar
Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photonics Rev. 17, 2200544 (2023).
Google Scholar
Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 6, 071101 (2021).
Google Scholar
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).
Google Scholar
Yanagimoto, R. et al. Data repository for “Programmable on-chip nonlinear photonics”. Zenodo https://doi.org/10.5281/zenodo.17074707 (2025).
Bolla, L. EMpy – Electromagnetic Python. GitHub https://github.com/lbolla/EMpy (2017).
Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.
Author: Ryotatsu Yanagimoto
Published on: 2025-10-08 04:00:00
Source: www.nature.com
Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.
Author: uaetodaynews
Published on: 2025-10-08 22:56:00
Source: uaetodaynews.com
