Programmable on-chip nonlinear photonics | Nature

Programmable on-chip nonlinear photonics | Nature

  • Boyd, R. W. Nonlinear Optics (Academic, 2008).

  • Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).

    Article 
    CAS 

    Google Scholar 

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006).

    Article 
    CAS 

    Google Scholar 

  • Dutt, A., Mohanty, A., Gaeta, A. L. & Lipson, M. Nonlinear and quantum photonics using integrated optical materials. Nat. Rev. Mater. 9, 321–346 (2024).

    Article 

    Google Scholar 

  • Ansari, V., Donohue, J. M., Brecht, B. & Silberhorn, C. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica 5, 534–550 (2018).

    Article 
    CAS 

    Google Scholar 

  • Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics 11, 200–206 (2017).

    Article 
    CAS 

    Google Scholar 

  • Heydari, D. et al. Degenerate optical parametric amplification in CMOS silicon. Optica 10, 430–437 (2023).

    Article 
    CAS 

    Google Scholar 

  • Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16, 134–141 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2020).

    Article 

    Google Scholar 

  • Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics 13, 494–499 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, B. et al. Down-converted photon pairs in a high-Q silicon nitride microresonator. Nature 639, 922–927 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).

    Article 

    Google Scholar 

  • Lu, H.-H., Liscidini, M., Gaeta, A. L., Weiner, A. M. & Lukens, J. M. Frequency-bin photonic quantum information. Optica 10, 1655–1671 (2023).

    Article 
    CAS 

    Google Scholar 

  • Oliver, R. et al. N-way parametric frequency beamsplitter for quantum photonics. Phys. Rev. Res. 7, 023108 (2025).

    Article 
    CAS 

    Google Scholar 

  • Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2013).

    Article 

    Google Scholar 

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article 

    Google Scholar 

  • Saxena, M., Eluru, G. & Gorthi, S. S. Structured illumination microscopy. Adv. Opt. Photonics 7, 241–275 (2015).

    Article 

    Google Scholar 

  • Heist, S. et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26, 23366–23379 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Metasurface-empowered five-dimensional imaging with structured light. ACS Photonics 11, 3898–3906 (2024).

    Article 
    CAS 

    Google Scholar 

  • Hum, D. S. & Fejer, M. M. Quasi-phasematching. C. R. Phys. 8, 180–198 (2006).

    Article 

    Google Scholar 

  • Hu, X., Xu, P. & Zhu, S. Engineered quasi-phase-matching for laser techniques. Photonics Res. 1, 171–185 (2013).

    Article 
    CAS 

    Google Scholar 

  • Chen, B.-Q., Zhang, C., Hu, C.-Y., Liu, R.-J. & Li, Z.-Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett. 115, 083902 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, S.-n, Zhu, Y.-y & Ming, N.-b Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article 
    CAS 

    Google Scholar 

  • Imeshev, G. et al. Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings. Opt. Lett. 23, 864–866 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009).

    Article 
    CAS 

    Google Scholar 

  • Dolev, I., Ellenbogen, T. & Arie, A. Switching the acceleration direction of Airy beams by a nonlinear optical process. Opt. Lett. 35, 1581–1583 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Fang, B., Li, H., Zhu, S. & Li, T. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Res. 8, 1296–1300 (2020).

    Article 

    Google Scholar 

  • Yoo, S. J. B. et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding. Appl. Phys. Lett. 68, 2609–2611 (1996).

    Article 
    CAS 

    Google Scholar 

  • Boes, A. et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J. Phys. Photonics 3, 012008 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, P.-K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Maker, P. D. & Terhune, R. W. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137, A801 (1965).

    Article 

    Google Scholar 

  • Oudar, J. L. & Le Person, H. Second-order polarizabilities of some aromatic molecules. Opt. Commun. 15, 258–262 (1975).

    Article 
    CAS 

    Google Scholar 

  • Lüpke, G. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep. 35, 75–161 (1999).

    Article 

    Google Scholar 

  • Zhao, X. et al. Nontrivial phase matching in helielectric polarization helices: universal phase matching theory, validation, and electric switching. Proc. Natl Acad. Sci. 119, e2205636119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sultanov, V. et al. Tunable entangled photon-pair generation in a liquid crystal. Nature 631, 294–299 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Onodera, T. et al. Scaling on-chip photonic neural processors using arbitrarily programmable wave propagation. Preprint at https://arxiv.org/abs/2402.17750 (2024).

  • Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).

    Article 
    CAS 

    Google Scholar 

  • Margules, P., Moses, J., Suchowski, H. & Porat, G. Ultrafast adiabatic frequency conversion. J. Phys. Photonics 3, 022011 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shiloh, R. & Arie, A. Spectral and temporal holograms with nonlinear optics. Opt. Lett. 37, 3591–3593 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Leshem, A., Shiloh, R. & Arie, A. Experimental realization of spectral shaping using nonlinear optical holograms. Opt. Lett. 39, 5370–5373 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174 (2022).

    Article 
    CAS 

    Google Scholar 

  • Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photonics Rev. 17, 2200544 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 6, 071101 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yanagimoto, R. et al. Data repository for “Programmable on-chip nonlinear photonics”. Zenodo https://doi.org/10.5281/zenodo.17074707 (2025).

  • Bolla, L. EMpy – Electromagnetic Python. GitHub https://github.com/lbolla/EMpy (2017).

  • Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
    We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.

    Author: Ryotatsu Yanagimoto
    Published on: 2025-10-08 04:00:00
    Source: www.nature.com


    Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
    We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.


    Author: uaetodaynews
    Published on: 2025-10-08 22:56:00
    Source: uaetodaynews.com

    qatarfortoday.com

    "Stay updated with Qatar For Today – your source for the latest news, business trends, and tech updates from Qatar and beyond."

    Related Articles

    Leave a Reply

    Back to top button